Home > Research > Publications & Outputs > Ionization Electron Signal Processing in Single...

Associated organisational unit

Electronic data

  • 1804.02583v2

    Rights statement: This is an author-created, un-copyedited version of an article accepted for publication/published in Journal of Instrumentation. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.1088/1748-0221/13/07/P07007

    Accepted author manuscript, 3.43 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE. / Blake, A.; Devitt, D.; Lister, A. et al.
In: Journal of Instrumentation, 06.07.2018.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Blake A, Devitt D, Lister A, Nowak J, MicroBooNE Collaboration. Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE. Journal of Instrumentation. 2018 Jul 6;P07007. doi: 10.1088/1748-0221/13/07/P07007

Author

Bibtex

@article{a98c80cb5dfd4e35b949e547fbe14bc0,
title = "Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE",
abstract = "The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.",
keywords = "physics.ins-det, hep-ex, nucl-ex",
author = "R. An and J. Anthony and J. Asaadi and M. Auger and S. Balasubramanian and B. Baller and C. Barnes and G. Barr and M. Bass and F. Bay and A. Bhat and K. Bhattacharya and M. Bishai and A. Blake and T. Bolton and L. Camilleri and D. Caratelli and Terrazas, {I. Caro} and Fernandez, {R. Castillo} and F. Cavanna and G. Cerati and E. Church and D. Cianci and E. Cohen and Collin, {G. H.} and Conrad, {J. M.} and M. Convery and L. Cooper-Troendle and Crespo-Anadon, {J. I.} and Tutto, {M. Del} and D. Devitt and A. Diaz and M. Dolce and S. Dytman and B. Eberly and A. Ereditato and Sanchez, {L. Escudero} and J. Esquivel and Fadeeva, {A. A.} and Fleming, {B. T.} and W. Foreman and Furmanski, {A. P.} and D. Garcia-Gamez and Garvey, {G. T.} and V. Genty and D. Goeldi and S. Gollapinni and E. Gramellini and A. Lister and J. Nowak and {MicroBooNE Collaboration}",
note = "This is an author-created, un-copyedited version of an article accepted for publication/published in Journal of Instrumentation. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.1088/1748-0221/13/07/P07007",
year = "2018",
month = jul,
day = "6",
doi = "10.1088/1748-0221/13/07/P07007",
language = "English",
journal = "Journal of Instrumentation",
issn = "1748-0221",
publisher = "Institute of Physics Publishing",

}

RIS

TY - JOUR

T1 - Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

AU - An, R.

AU - Anthony, J.

AU - Asaadi, J.

AU - Auger, M.

AU - Balasubramanian, S.

AU - Baller, B.

AU - Barnes, C.

AU - Barr, G.

AU - Bass, M.

AU - Bay, F.

AU - Bhat, A.

AU - Bhattacharya, K.

AU - Bishai, M.

AU - Blake, A.

AU - Bolton, T.

AU - Camilleri, L.

AU - Caratelli, D.

AU - Terrazas, I. Caro

AU - Fernandez, R. Castillo

AU - Cavanna, F.

AU - Cerati, G.

AU - Church, E.

AU - Cianci, D.

AU - Cohen, E.

AU - Collin, G. H.

AU - Conrad, J. M.

AU - Convery, M.

AU - Cooper-Troendle, L.

AU - Crespo-Anadon, J. I.

AU - Tutto, M. Del

AU - Devitt, D.

AU - Diaz, A.

AU - Dolce, M.

AU - Dytman, S.

AU - Eberly, B.

AU - Ereditato, A.

AU - Sanchez, L. Escudero

AU - Esquivel, J.

AU - Fadeeva, A. A.

AU - Fleming, B. T.

AU - Foreman, W.

AU - Furmanski, A. P.

AU - Garcia-Gamez, D.

AU - Garvey, G. T.

AU - Genty, V.

AU - Goeldi, D.

AU - Gollapinni, S.

AU - Gramellini, E.

AU - Lister, A.

AU - Nowak, J.

AU - MicroBooNE Collaboration

N1 - This is an author-created, un-copyedited version of an article accepted for publication/published in Journal of Instrumentation. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.1088/1748-0221/13/07/P07007

PY - 2018/7/6

Y1 - 2018/7/6

N2 - The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.

AB - The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.

KW - physics.ins-det

KW - hep-ex

KW - nucl-ex

U2 - 10.1088/1748-0221/13/07/P07007

DO - 10.1088/1748-0221/13/07/P07007

M3 - Journal article

JO - Journal of Instrumentation

JF - Journal of Instrumentation

SN - 1748-0221

M1 - P07007

ER -