Final published version, 3.15 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Conference article › peer-review
Research output: Contribution to Journal/Magazine › Conference article › peer-review
}
TY - JOUR
T1 - Markovian Flow Matching
T2 - Accelerating MCMC with Continuous Normalizing Flows
AU - Cabezas Gonzalez, Alberto
AU - Sharrock, Louis
AU - Nemeth, Christopher
PY - 2024/9/25
Y1 - 2024/9/25
N2 - Continuous normalizing flows (CNFs) learn the probability path between a reference distribution and a target distribution by modeling the vector field generating said path using neural networks. Recently, Lipman et al. [45] introduced a simple and inexpensive method for training CNFs in generative modeling, termed flow matching (FM). In this paper, we repurpose this method for probabilistic inference by incorporating Markovian sampling methods in evaluating the FM objective, and using the learned CNF to improve Monte Carlo sampling. Specifically, we propose an adaptive Markov chain Monte Carlo (MCMC) algorithm, which combines a local Markov transition kernel with a non-local, flow-informed transition kernel, defined using a CNF. This CNF is adapted on-the-fly using samples from the Markov chain, which are used to specify the probability path for the FM objective. Our method also includes an adaptive tempering mechanism that allows the discovery of multiple modes in the target distribution. Under mild assumptions, we establish convergence of our method to a local optimum of the FM objective. We then benchmark our approach on several synthetic and real-world examples, achieving similar performance to other state-of-the-art methods, but often at a significantly lower computational cost.
AB - Continuous normalizing flows (CNFs) learn the probability path between a reference distribution and a target distribution by modeling the vector field generating said path using neural networks. Recently, Lipman et al. [45] introduced a simple and inexpensive method for training CNFs in generative modeling, termed flow matching (FM). In this paper, we repurpose this method for probabilistic inference by incorporating Markovian sampling methods in evaluating the FM objective, and using the learned CNF to improve Monte Carlo sampling. Specifically, we propose an adaptive Markov chain Monte Carlo (MCMC) algorithm, which combines a local Markov transition kernel with a non-local, flow-informed transition kernel, defined using a CNF. This CNF is adapted on-the-fly using samples from the Markov chain, which are used to specify the probability path for the FM objective. Our method also includes an adaptive tempering mechanism that allows the discovery of multiple modes in the target distribution. Under mild assumptions, we establish convergence of our method to a local optimum of the FM objective. We then benchmark our approach on several synthetic and real-world examples, achieving similar performance to other state-of-the-art methods, but often at a significantly lower computational cost.
M3 - Conference article
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
SN - 1049-5258
ER -