Home > Research > Publications & Outputs > Power Efficient IRS-Assisted NOMA

Electronic data

  • IRS_NOMA_paper

    Rights statement: ©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Accepted author manuscript, 5.4 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Power Efficient IRS-Assisted NOMA

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
<mark>Journal publication date</mark>1/02/2021
<mark>Journal</mark>IEEE Transactions on Communications
Issue number2
Volume69
Number of pages14
Pages (from-to)900 - 913
Publication StatusPublished
Early online date26/10/20
<mark>Original language</mark>English

Abstract

In this paper, we propose a downlink multiple-input single-output (MISO) transmission scheme, which is assisted by an intelligent reflecting surface (IRS) consisting of a large number of passive reflecting elements. In the literature, it has been proved that nonorthogonal multiple access (NOMA) can achieve the same performance as computationally complex dirty paper coding, where the quasi-degradation condition is satisfied, conditioned on the users’ channels fall in the quasi-degradation region. However, in a conventional communication scenario, it is difficult to guarantee the quasi-degradation, because the channels are determined by the propagation environments and cannot be reconfigured. To overcome this difficulty, we focus on an IRS-assisted MISO NOMA system, where the wireless channels can be effectively tuned. We optimize the beamforming vectors and the IRS phase shift matrix for minimizing transmission power. Furthermore, we propose an improved quasi-degradation condition by using IRS, which can ensure that NOMA achieves the capacity region with high possibility. For a comparison, we study zero-forcing beamforming (ZFBF) as well, where the beamforming vectors and the IRS phase shift matrix are also jointly optimized. Comparing NOMA with ZFBF, it is shown that, with the same IRS phase shift matrix and the improved quasi-degradation condition, NOMA always outperforms ZFBF. At the same time, we identify the condition under which ZFBF outperforms NOMA, which motivates the proposed hybrid NOMA transmission. Simulation results show that the proposed IRS-assisted MISO system outperforms the MISO case without IRS, and the hybrid NOMA transmission scheme always achieves better performance than orthogonal multiple access.

Bibliographic note

©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.