Accepted author manuscript, 6.13 MB, Word document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN)
AU - Ding, Xiaoxuan
AU - Hou, Xiaonan
AU - Xia, Min
AU - Ismail, Yaser
AU - Ye, Jianqiao
PY - 2022/12/15
Y1 - 2022/12/15
N2 - Fibre-reinforced polymer (FRP) composites have been widely used in different engineering sectors due to their excellent physical and mechanical properties. Therefore, fast, convenient and accurate prediction tools for both macroscopic mechanical properties and failure of the composites are highly demanded by industry and interested by academia. In this study, two back-propagation deep neural network (DNN) models are developed. The first model is a regression model for predicting macroscopic transverse mechanical properties of FRP laminae, which is based on a data set generated by Discrete Element Method (DEM) simulations of 2000 Representative Volume Element (RVE) with 200 different sets of fibre volume fractions and fibre radii. The second model, which is a classification model based on the results of 1600 DEM simulations of RVEs with a fixed 45 % fibre volume fraction and 3.3μm fibre radius, is developed for predicting microscopic crack patterns of the FRP laminae. The results show that the two developed DNN models are able to predict both the macroscopic transverse mechanical properties and the microscopic cracks of the RVE accurately.
AB - Fibre-reinforced polymer (FRP) composites have been widely used in different engineering sectors due to their excellent physical and mechanical properties. Therefore, fast, convenient and accurate prediction tools for both macroscopic mechanical properties and failure of the composites are highly demanded by industry and interested by academia. In this study, two back-propagation deep neural network (DNN) models are developed. The first model is a regression model for predicting macroscopic transverse mechanical properties of FRP laminae, which is based on a data set generated by Discrete Element Method (DEM) simulations of 2000 Representative Volume Element (RVE) with 200 different sets of fibre volume fractions and fibre radii. The second model, which is a classification model based on the results of 1600 DEM simulations of RVEs with a fixed 45 % fibre volume fraction and 3.3μm fibre radius, is developed for predicting microscopic crack patterns of the FRP laminae. The results show that the two developed DNN models are able to predict both the macroscopic transverse mechanical properties and the microscopic cracks of the RVE accurately.
U2 - 10.1016/j.compstruct.2022.116248
DO - 10.1016/j.compstruct.2022.116248
M3 - Journal article
VL - 302
JO - Composite Structures
JF - Composite Structures
SN - 0263-8223
M1 - 116248
ER -