Accepted author manuscript, 3.83 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Prospects for Beyond the Standard Model Physics Searches at the Deep Underground Neutrino Experiment
AU - DUNE Collaboration
AU - Abi, B.
AU - Acciarri, R.
AU - Acero, M. A.
AU - Adamov, G.
AU - Adams, D.
AU - Adinolfi, M.
AU - Ahmad, Z.
AU - Ahmed, J.
AU - Alion, T.
AU - Monsalve, S. Alonso
AU - Alt, C.
AU - Andreopoulos, C.
AU - Andrews, M. P.
AU - Andrianala, F.
AU - Andringa, S.
AU - Ankowski, A.
AU - Antonova, M.
AU - Antusch, S.
AU - Aranda-Fernandez, A.
AU - Ariga, A.
AU - Arnold, L. O.
AU - Arroyave, M. A.
AU - Asaadi, J.
AU - Aurisano, A.
AU - Aushev, V.
AU - Autiero, D.
AU - Azfar, F.
AU - Back, H.
AU - Back, J. J.
AU - Backhouse, C.
AU - Baesso, P.
AU - Bagby, L.
AU - Bajou, R.
AU - Balasubramanian, S.
AU - Baldi, P.
AU - Bambah, B.
AU - Barao, F.
AU - Barenboim, G.
AU - Barker, G. J.
AU - Barkhouse, W.
AU - Barnes, C.
AU - Barr, G.
AU - Monarca, J. Barranco
AU - Barros, N.
AU - Blake, A.
AU - Brailsford, D.
AU - Cross, R.
AU - Nowak, J. A.
AU - Ratoff, P.
PY - 2021/4/16
Y1 - 2021/4/16
N2 - The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
AB - The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
KW - hep-ex
KW - hep-ph
U2 - 10.1140/epjc/s10052-021-09007-w
DO - 10.1140/epjc/s10052-021-09007-w
M3 - Journal article
VL - 81
JO - European Physical Journal C: Particles and Fields
JF - European Physical Journal C: Particles and Fields
SN - 1434-6044
M1 - 322
ER -