Rights statement: © 2022 American Physical Society
Accepted author manuscript, 1.04 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Accepted author manuscript
Licence: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Quantum Monte Carlo study of three-dimensional Coulomb complexes
T2 - Trions and biexcitons, hydrogen molecules and ions, helium hydride cations, and positronic and muonic complexes
AU - Marsusi, Farah
AU - Mostaani, Elaheh
AU - Drummond, Neil
N1 - © 2022 American Physical Society
PY - 2022/12/23
Y1 - 2022/12/23
N2 - Three-dimensional (3D) excitonic complexes influence the optoelectronic properties of bulk semiconductors. More generally, correlated few-particle molecules and ions, held together by pairwise Coulomb potentials, play a fundamental role in a variety of fields in physics and chemistry. Based on statistically exact diffusion quantum Monte Carlo calculations, we have studied excitonic three- and four-body complexes (trions and biexcitons) in bulk 3D semiconductors, as well as a range of small molecules and ions in which the nuclei are treated as quantum particles on an equal footing with the electrons. We present interpolation formulas that predict the binding energies of these complexes, either in bulk semiconductors or in free space. By evaluating pair distribution functions within quantum Monte Carlo simulations, we examine the importance of harmonic and anharmonic vibrational effects in small molecules.
AB - Three-dimensional (3D) excitonic complexes influence the optoelectronic properties of bulk semiconductors. More generally, correlated few-particle molecules and ions, held together by pairwise Coulomb potentials, play a fundamental role in a variety of fields in physics and chemistry. Based on statistically exact diffusion quantum Monte Carlo calculations, we have studied excitonic three- and four-body complexes (trions and biexcitons) in bulk 3D semiconductors, as well as a range of small molecules and ions in which the nuclei are treated as quantum particles on an equal footing with the electrons. We present interpolation formulas that predict the binding energies of these complexes, either in bulk semiconductors or in free space. By evaluating pair distribution functions within quantum Monte Carlo simulations, we examine the importance of harmonic and anharmonic vibrational effects in small molecules.
U2 - 10.1103/PhysRevA.106.062822
DO - 10.1103/PhysRevA.106.062822
M3 - Journal article
VL - 106
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
SN - 1050-2947
IS - 6
M1 - 062822
ER -