Home > Research > Publications & Outputs > Quasiparticle recombination in hotspots in supe...

Associated organisational unit

Electronic data

  • PhysRevB.92.064504

    Rights statement: © 2015 American Physical Society

    Final published version, 2.47 MB, PDF document

Links

Text available via DOI:

View graph of relations

Quasiparticle recombination in hotspots in superconducting current-carrying nanowires

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Quasiparticle recombination in hotspots in superconducting current-carrying nanowires. / Kozorezov, A. G.; Lambert, Colin; Marsili, F. et al.
In: Physical review B, Vol. 92, No. 6, 064504, 01.08.2015.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Kozorezov, AG, Lambert, C, Marsili, F, Stevens, MJ, Verma, VB, Stern, JA, Horansky, R, Dyer, S, Duff, S, Pappas, DP, Lita, A, Shaw, MD, Mirin, RP & Nam, SW 2015, 'Quasiparticle recombination in hotspots in superconducting current-carrying nanowires', Physical review B, vol. 92, no. 6, 064504. https://doi.org/10.1103/PhysRevB.92.064504

APA

Kozorezov, A. G., Lambert, C., Marsili, F., Stevens, M. J., Verma, V. B., Stern, J. A., Horansky, R., Dyer, S., Duff, S., Pappas, D. P., Lita, A., Shaw, M. D., Mirin, R. P., & Nam, S. W. (2015). Quasiparticle recombination in hotspots in superconducting current-carrying nanowires. Physical review B, 92(6), Article 064504. https://doi.org/10.1103/PhysRevB.92.064504

Vancouver

Kozorezov AG, Lambert C, Marsili F, Stevens MJ, Verma VB, Stern JA et al. Quasiparticle recombination in hotspots in superconducting current-carrying nanowires. Physical review B. 2015 Aug 1;92(6):064504. doi: 10.1103/PhysRevB.92.064504

Author

Bibtex

@article{92c90951ab724a938d4ccade5eba6379,
title = "Quasiparticle recombination in hotspots in superconducting current-carrying nanowires",
abstract = "We describe a kinetic model of recombination of nonequilibrium quasiparticles generated by single photon absorption in superconducting current-carrying nanowires. The model is developed to interpret two-photon detection experiments in which a single photon does not possess sufficient energy for breaking superconductivity at a fixed low bias current. We show that quasiparticle self-recombination in relaxing hotspots dominates diffusion expansion effects and explains the observed strong bias current, wavelength, and temperature dependencies of hotspot relaxation in tungsten silicide superconducting nanowire single-photon detectors.",
keywords = "SINGLE-PHOTON DETECTORS, TRANSITION-EDGE SENSORS, TUNGSTEN-SILICIDE, EFFICIENCY, STRIPS, FILM",
author = "Kozorezov, {A. G.} and Colin Lambert and F. Marsili and Stevens, {M. J.} and Verma, {V. B.} and Stern, {J. A.} and R. Horansky and S. Dyer and S. Duff and Pappas, {D. P.} and A. Lita and Shaw, {M. D.} and Mirin, {R. P.} and Nam, {Sae Woo}",
note = "{\textcopyright} 2015 American Physical Society",
year = "2015",
month = aug,
day = "1",
doi = "10.1103/PhysRevB.92.064504",
language = "English",
volume = "92",
journal = "Physical review B",
issn = "1098-0121",
publisher = "AMER PHYSICAL SOC",
number = "6",

}

RIS

TY - JOUR

T1 - Quasiparticle recombination in hotspots in superconducting current-carrying nanowires

AU - Kozorezov, A. G.

AU - Lambert, Colin

AU - Marsili, F.

AU - Stevens, M. J.

AU - Verma, V. B.

AU - Stern, J. A.

AU - Horansky, R.

AU - Dyer, S.

AU - Duff, S.

AU - Pappas, D. P.

AU - Lita, A.

AU - Shaw, M. D.

AU - Mirin, R. P.

AU - Nam, Sae Woo

N1 - © 2015 American Physical Society

PY - 2015/8/1

Y1 - 2015/8/1

N2 - We describe a kinetic model of recombination of nonequilibrium quasiparticles generated by single photon absorption in superconducting current-carrying nanowires. The model is developed to interpret two-photon detection experiments in which a single photon does not possess sufficient energy for breaking superconductivity at a fixed low bias current. We show that quasiparticle self-recombination in relaxing hotspots dominates diffusion expansion effects and explains the observed strong bias current, wavelength, and temperature dependencies of hotspot relaxation in tungsten silicide superconducting nanowire single-photon detectors.

AB - We describe a kinetic model of recombination of nonequilibrium quasiparticles generated by single photon absorption in superconducting current-carrying nanowires. The model is developed to interpret two-photon detection experiments in which a single photon does not possess sufficient energy for breaking superconductivity at a fixed low bias current. We show that quasiparticle self-recombination in relaxing hotspots dominates diffusion expansion effects and explains the observed strong bias current, wavelength, and temperature dependencies of hotspot relaxation in tungsten silicide superconducting nanowire single-photon detectors.

KW - SINGLE-PHOTON DETECTORS

KW - TRANSITION-EDGE SENSORS

KW - TUNGSTEN-SILICIDE

KW - EFFICIENCY

KW - STRIPS

KW - FILM

U2 - 10.1103/PhysRevB.92.064504

DO - 10.1103/PhysRevB.92.064504

M3 - Journal article

VL - 92

JO - Physical review B

JF - Physical review B

SN - 1098-0121

IS - 6

M1 - 064504

ER -