Rights statement: This is the author’s version of a work that was accepted for publication in Environmental Pollution. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Pollution, 292, Part A, 2021 DOI: 10.1016/j.envpol.2021.118218
Accepted author manuscript, 3.17 MB, Word document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Reductions in crop yields across China from elevated ozone
AU - Wang, Yuanlin
AU - Wild, Oliver
AU - Ashworth, Kirsti
AU - Chen, Xueshun
AU - Wu, Qizhong
AU - Qi, Yi
AU - Wang, Zifa
N1 - This is the author’s version of a work that was accepted for publication in Environmental Pollution. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Pollution, 292, Part A, 2021 DOI: 10.1016/j.envpol.2021.118218
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Exposure of crops to high concentrations of ozone can cause substantial reductions in yield that pose a serious threat to global food security. Here we provide comprehensive estimates of yield losses for key crops across China between 2014 and 2017 attributed to ozone using a number of new approaches. We use an air quality model at 5 km resolution and crop-specific dose-response functions developed for both concentration- and flux-based metrics. We bias correct modelled ozone concentrations and metrics using observations from more than 1000 locations. We find that on a 4-year average basis, production losses of key crops are 34–91 million metric tonnes (Mt/yr), dependent on the approach used, with highest losses in Henan province. At a national level, loss of winter wheat production derived using a China-specific dose-response function increased by 82% from 2014 to 2017, with large interannual variations in the North China Plain and in eastern China. Winter wheat losses estimated using flux-based functions, which require robust simulation of stomatal conductance and underlying vegetation physiology, are significantly lower, at 30 Mt/yr. We show that the definition of the growing season may have a greater impact on estimated losses than small biases in ozone surface concentrations. Although uncertainties remain, our findings demonstrate that increasing ozone concentrations have substantial adverse impacts on crop yields and threaten food security in China. It is important to control ozone concentrations to mitigate these negative impacts.
AB - Exposure of crops to high concentrations of ozone can cause substantial reductions in yield that pose a serious threat to global food security. Here we provide comprehensive estimates of yield losses for key crops across China between 2014 and 2017 attributed to ozone using a number of new approaches. We use an air quality model at 5 km resolution and crop-specific dose-response functions developed for both concentration- and flux-based metrics. We bias correct modelled ozone concentrations and metrics using observations from more than 1000 locations. We find that on a 4-year average basis, production losses of key crops are 34–91 million metric tonnes (Mt/yr), dependent on the approach used, with highest losses in Henan province. At a national level, loss of winter wheat production derived using a China-specific dose-response function increased by 82% from 2014 to 2017, with large interannual variations in the North China Plain and in eastern China. Winter wheat losses estimated using flux-based functions, which require robust simulation of stomatal conductance and underlying vegetation physiology, are significantly lower, at 30 Mt/yr. We show that the definition of the growing season may have a greater impact on estimated losses than small biases in ozone surface concentrations. Although uncertainties remain, our findings demonstrate that increasing ozone concentrations have substantial adverse impacts on crop yields and threaten food security in China. It is important to control ozone concentrations to mitigate these negative impacts.
KW - High resolution
KW - Air quality model
KW - Crop yield loss
KW - M7/M12
KW - AOT40
KW - PODIAM
KW - Interannual variations
U2 - 10.1016/j.envpol.2021.118218
DO - 10.1016/j.envpol.2021.118218
M3 - Journal article
VL - 292
JO - Environmental Pollution
JF - Environmental Pollution
SN - 0269-7491
M1 - 118218
ER -