Rights statement: This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Computational and Graphical Statistics on 19/06/2017, available online: https://www.tandfonline.com/doi/full/10.1080/10618600.2017.1302340
Accepted author manuscript, 766 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Regularized Estimation of Piecewise Constant Gaussian Graphical Models
T2 - The Group-Fused Graphical Lasso
AU - Gibberd, A.
AU - Nelson, J. D. B.
N1 - This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Computational and Graphical Statistics on 19/06/2017, available online: https://www.tandfonline.com/doi/full/10.1080/10618600.2017.1302340
PY - 2017/6/19
Y1 - 2017/6/19
N2 - The time-evolving precision matrix of a piecewise-constant Gaussian graphical model encodes the dynamic conditional dependency structure of a multivariate time-series. Traditionally, graphical models are estimated under the assumption that data are drawn identically from a generating distribution. Introducing sparsity and sparse-difference inducing priors, we relax these assumptions and propose a novel regularized M-estimator to jointly estimate both the graph and changepoint structure. The resulting estimator possesses the ability to therefore favor sparse dependency structures and/or smoothly evolving graph structures, as required. Moreover, our approach extends current methods to allow estimation of changepoints that are grouped across multiple dependencies in a system. An efficient algorithm for estimating structure is proposed. We study the empirical recovery properties in a synthetic setting. The qualitative effect of grouped changepoint estimation is then demonstrated by applying the method on a genetic time-course dataset. Supplementary material for this article is available online.
AB - The time-evolving precision matrix of a piecewise-constant Gaussian graphical model encodes the dynamic conditional dependency structure of a multivariate time-series. Traditionally, graphical models are estimated under the assumption that data are drawn identically from a generating distribution. Introducing sparsity and sparse-difference inducing priors, we relax these assumptions and propose a novel regularized M-estimator to jointly estimate both the graph and changepoint structure. The resulting estimator possesses the ability to therefore favor sparse dependency structures and/or smoothly evolving graph structures, as required. Moreover, our approach extends current methods to allow estimation of changepoints that are grouped across multiple dependencies in a system. An efficient algorithm for estimating structure is proposed. We study the empirical recovery properties in a synthetic setting. The qualitative effect of grouped changepoint estimation is then demonstrated by applying the method on a genetic time-course dataset. Supplementary material for this article is available online.
KW - Changepoint
KW - High-dimensional
KW - M-estimator
KW - Sparsity
KW - Time-series
U2 - 10.1080/10618600.2017.1302340
DO - 10.1080/10618600.2017.1302340
M3 - Journal article
VL - 26
SP - 623
EP - 634
JO - Journal of Computational and Graphical Statistics
JF - Journal of Computational and Graphical Statistics
SN - 1061-8600
IS - 3
ER -