Rights statement: Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Final published version, 535 KB, PDF document
Available under license: CC BY
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Self-organized enhancement of conductivity in biological ion channels
AU - Tindjong, Rodrigue
AU - Kaufman, Igor
AU - Luchinsky, Dmitrii G.
AU - McClintock, Peter V. E.
AU - Khovanov, Igor A.
AU - Eisenberg, R. S.
N1 - Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
PY - 2013/10/7
Y1 - 2013/10/7
N2 - We discuss an example of self-organisation in a biological system. It arises from long-range ion-ion interactions, and it leads us to propose a novel mechanism of enhanced conduction in ion channels. The underlying mechanism involves charge fluctuations near the channel mouth, amplified by the mismatch between the relative permittivities of water and the protein of the channel walls. We use Brownian dynamics simulations to show that, as in conventional ``knock-on'' permeation, these interactions can strongly enhance the channel current; but unlike the conventional mechanism the enhancement occurs without the instigating bath ion entering the channel. The transition between these two mechanisms is clearly demonstrated, emphasizing their distinction. A simple model accurately reproduces the observed phenomena. We point out that electrolyte plus protein of low relative permittivity are universal in living systems, so that long-range ion-ion correlations of the kind considered must be common.
AB - We discuss an example of self-organisation in a biological system. It arises from long-range ion-ion interactions, and it leads us to propose a novel mechanism of enhanced conduction in ion channels. The underlying mechanism involves charge fluctuations near the channel mouth, amplified by the mismatch between the relative permittivities of water and the protein of the channel walls. We use Brownian dynamics simulations to show that, as in conventional ``knock-on'' permeation, these interactions can strongly enhance the channel current; but unlike the conventional mechanism the enhancement occurs without the instigating bath ion entering the channel. The transition between these two mechanisms is clearly demonstrated, emphasizing their distinction. A simple model accurately reproduces the observed phenomena. We point out that electrolyte plus protein of low relative permittivity are universal in living systems, so that long-range ion-ion correlations of the kind considered must be common.
U2 - 10.1088/1367-2630/15/10/103005
DO - 10.1088/1367-2630/15/10/103005
M3 - Journal article
VL - 15
JO - New Journal of Physics
JF - New Journal of Physics
SN - 1367-2630
IS - 10
M1 - 103005
ER -