Home > Research > Publications & Outputs > Silicon photosensitisation using molecular layers

Associated organisational unit

Electronic data


Text available via DOI:

View graph of relations

Silicon photosensitisation using molecular layers

Research output: Contribution to Journal/MagazineJournal articlepeer-review

<mark>Journal publication date</mark>19/06/2020
<mark>Journal</mark>Faraday Discussions
Number of pages19
Pages (from-to)405-423
Publication StatusPublished
Early online date12/11/19
<mark>Original language</mark>English


Silicon photosensitisation via energy transfer from molecular dye layers is a promising area of research for excitonic silicon photovoltaics. We present the synthesis and photophysical characterisation of vinyl and allyl terminated Si(111) surfaces decorated with perylene molecules. The functionalised silicon surfaces together with Langmuir-Blodgett (LB) films based on perylene derivatives were studied using a wide range of steady-state and time resolved spectroscopic techniques. Fluorescence lifetime quenching experiments performed on the perylene modified monolayers revealed energy transfer efficiencies to silicon of up to 90 per cent. We present a simple model to account for the near field interaction of a dipole emitter with the silicon surface and distinguish between the 'true' FRET region (<5 nm) and a different process, photon tunnelling, occurring for distances between 10-50 nm. The requirements for a future ultra-thin crystalline solar cell paradigm include efficient surface passivation and keeping a close distance between the emitter dipole and the surface. These are discussed in the context of existing limitations and questions raised about the finer details of the emitter-silicon interaction.