Home > Research > Publications & Outputs > Single-electron current sources

Electronic data

  • RevModPhys.85.1421

    Rights statement: © 2013 American Physical Society

    Final published version, 6.78 MB, PDF document


Text available via DOI:

View graph of relations

Single-electron current sources: toward a refined definition of the ampere

Research output: Contribution to Journal/MagazineJournal articlepeer-review

  • Jukka P. Pekola
  • O. -P. Saira
  • Ville F. Maisi
  • A. Kemppinen
  • Mikko Möttönen
  • Yuri Pashkin
  • D. V. Averin
<mark>Journal publication date</mark>2/10/2013
<mark>Journal</mark>Reviews of Modern Physics
Issue number4
Number of pages52
Pages (from-to)1421-1472
Publication StatusPublished
<mark>Original language</mark>English


The control electrons at the level of the elementary charge e was demonstrated experimentally already in the 1980s. Ever since, the production of an electrical current ef, or its integer multiple, at a drive frequency f has been in a focus of research for metrological purposes.This review discusses the generic physical phenomena and technical constraints that influence single-electron charge transport and presents a broad variety of proposed realizations. Some of them have already proven experimentally to nearly fulfill the demanding needs, in terms of transfer errors and transfer rate, of quantum metrology of electrical quantities, whereas some others are currently ‘‘just’’ wild ideas, still often
potentially competitive if technical constraints can be lifted. The important issues of readout of singleelectron events and potential error correction schemes based on them are also discussed. Finally, an account is given of the status of single-electron current sources in the bigger framework of electric
quantum standards and of the future international SI system of units, and applications and uses of single-electron devices outside the metrological context are briefly discussed.

Bibliographic note

© 2013 American Physical Society