Home > Research > Publications & Outputs > Supernova Neutrino Burst Detection with the Dee...

Associated organisational unit

Electronic data

  • 2008.06647v1

    Accepted author manuscript, 2 MB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment. / DUNE Collaboration ; Blake, A.; Brailsford, D. et al.
In: European Physical Journal C: Particles and Fields, Vol. 81, No. 5, 423, 15.05.2021.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

DUNE Collaboration, Blake A, Brailsford D, Cross R, Nowak JA, Ratoff P. Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment. European Physical Journal C: Particles and Fields. 2021 May 15;81(5):423. doi: 10.1140/epjc/s10052-021-09166-w

Author

DUNE Collaboration ; Blake, A. ; Brailsford, D. et al. / Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment. In: European Physical Journal C: Particles and Fields. 2021 ; Vol. 81, No. 5.

Bibtex

@article{558322f9cf774418886e8b60a6c54629,
title = "Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment",
abstract = "The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the $\nu_e$ spectral parameters of the neutrino burst will be considered. ",
keywords = "hep-ex, astro-ph.IM, astro-ph.SR, nucl-ex, physics.ins-det",
author = "{DUNE Collaboration} and B. Abi and R. Acciarri and Acero, {M. A.} and G. Adamov and D. Adams and M. Adinolfi and Z. Ahmad and J. Ahmed and T. Alion and Monsalve, {S. Alonso} and C. Alt and C. Andreopoulos and Andrews, {M. P.} and F. Andrianala and S. Andringa and A. Ankowski and M. Antonova and S. Antusch and A. Ara-Fernez and A. Ariga and Arnold, {L. O.} and Arroyave, {M. A.} and J. Asaadi and A. Aurisano and V. Aushev and D. Autiero and F. Azfar and H. Back and Back, {J. J.} and C. Backhouse and P. Baesso and L. Bagby and R. Bajou and S. Balasubramanian and P. Baldi and B. Bambah and F. Barao and G. Barenboim and Barker, {G. J.} and W. Barkhouse and C. Barnes and G. Barr and Monarca, {J. Barranco} and N. Barros and Barrow, {J. L.} and A. Blake and D. Brailsford and R. Cross and Nowak, {J. A.} and P. Ratoff",
year = "2021",
month = may,
day = "15",
doi = "10.1140/epjc/s10052-021-09166-w",
language = "English",
volume = "81",
journal = "European Physical Journal C: Particles and Fields",
issn = "1434-6044",
publisher = "SPRINGER",
number = "5",

}

RIS

TY - JOUR

T1 - Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment

AU - DUNE Collaboration

AU - Abi, B.

AU - Acciarri, R.

AU - Acero, M. A.

AU - Adamov, G.

AU - Adams, D.

AU - Adinolfi, M.

AU - Ahmad, Z.

AU - Ahmed, J.

AU - Alion, T.

AU - Monsalve, S. Alonso

AU - Alt, C.

AU - Andreopoulos, C.

AU - Andrews, M. P.

AU - Andrianala, F.

AU - Andringa, S.

AU - Ankowski, A.

AU - Antonova, M.

AU - Antusch, S.

AU - Ara-Fernez, A.

AU - Ariga, A.

AU - Arnold, L. O.

AU - Arroyave, M. A.

AU - Asaadi, J.

AU - Aurisano, A.

AU - Aushev, V.

AU - Autiero, D.

AU - Azfar, F.

AU - Back, H.

AU - Back, J. J.

AU - Backhouse, C.

AU - Baesso, P.

AU - Bagby, L.

AU - Bajou, R.

AU - Balasubramanian, S.

AU - Baldi, P.

AU - Bambah, B.

AU - Barao, F.

AU - Barenboim, G.

AU - Barker, G. J.

AU - Barkhouse, W.

AU - Barnes, C.

AU - Barr, G.

AU - Monarca, J. Barranco

AU - Barros, N.

AU - Barrow, J. L.

AU - Blake, A.

AU - Brailsford, D.

AU - Cross, R.

AU - Nowak, J. A.

AU - Ratoff, P.

PY - 2021/5/15

Y1 - 2021/5/15

N2 - The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the $\nu_e$ spectral parameters of the neutrino burst will be considered.

AB - The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the $\nu_e$ spectral parameters of the neutrino burst will be considered.

KW - hep-ex

KW - astro-ph.IM

KW - astro-ph.SR

KW - nucl-ex

KW - physics.ins-det

U2 - 10.1140/epjc/s10052-021-09166-w

DO - 10.1140/epjc/s10052-021-09166-w

M3 - Journal article

VL - 81

JO - European Physical Journal C: Particles and Fields

JF - European Physical Journal C: Particles and Fields

SN - 1434-6044

IS - 5

M1 - 423

ER -