Accepted author manuscript, 1.66 MB, Word document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Surgical stress
T2 - the muscle and cognitive demands of robotic and laparoscopic surgery
AU - Shugaba, Abdulwarith
AU - Subar, Daren
AU - Slade, Kate
AU - Willett, Mark
AU - Abdel-Aty, Mohammed
AU - Campbell, Iain
AU - Heywood, Nick
AU - Vitone, Louis
AU - Sheikh, Adnan
AU - Gill, Mike
AU - Zelhof, Bachar
AU - Nuttall, Helen E
AU - Bampouras, Theodoros
AU - Gaffney, Christopher
PY - 2023/3/30
Y1 - 2023/3/30
N2 - Introduction: Surgeons are among the most at-risk professionals for work-related musculoskeletal decline and experience high mental demands. This study examined the electromyographic (EMG) and electroencephalographic (EEG) activities of surgeons during surgery.Methods: Surgeons who performed live laparoscopic (LS) and robotic (RS) surgeries underwent EMG and EEG measurements. Wireless EMG was used to measure muscle activation in four muscle groups bilaterally (biceps brachii, deltoid, upper trapezius, and latissimus dorsi), and an 8-channel wireless EEG device was used to measure cognitive demand. EMG and EEG recordings were completed simultaneously during (i) noncritical bowel dissection, (ii) critical vessel dissection, and (iii) dissection after vessel control. Robust ANOVA was used to compare the %MVCRMS and alpha power between LS and RS. Results: Thirteen male surgeons performed 26 laparoscopic surgeries (LS) and 28 robotic surgeries (RS). Muscle activation was significantly higher in the right deltoid (p = 0.006), upper trapezius (left, p = 0.041; right, p = 0.032), and latissimus dorsi (left, p = 0.003; right, p = 0.014) muscles in the LS group. There was greater muscle activation in the right biceps than in the left biceps in both surgical modalities (both p = 0.0001). There was a significant effect of the time of surgery on the EEG activity (p Conclusion: These data suggest greater muscle demands in laparoscopic surgery, but greater cognitive demands in robotic surgery.
AB - Introduction: Surgeons are among the most at-risk professionals for work-related musculoskeletal decline and experience high mental demands. This study examined the electromyographic (EMG) and electroencephalographic (EEG) activities of surgeons during surgery.Methods: Surgeons who performed live laparoscopic (LS) and robotic (RS) surgeries underwent EMG and EEG measurements. Wireless EMG was used to measure muscle activation in four muscle groups bilaterally (biceps brachii, deltoid, upper trapezius, and latissimus dorsi), and an 8-channel wireless EEG device was used to measure cognitive demand. EMG and EEG recordings were completed simultaneously during (i) noncritical bowel dissection, (ii) critical vessel dissection, and (iii) dissection after vessel control. Robust ANOVA was used to compare the %MVCRMS and alpha power between LS and RS. Results: Thirteen male surgeons performed 26 laparoscopic surgeries (LS) and 28 robotic surgeries (RS). Muscle activation was significantly higher in the right deltoid (p = 0.006), upper trapezius (left, p = 0.041; right, p = 0.032), and latissimus dorsi (left, p = 0.003; right, p = 0.014) muscles in the LS group. There was greater muscle activation in the right biceps than in the left biceps in both surgical modalities (both p = 0.0001). There was a significant effect of the time of surgery on the EEG activity (p Conclusion: These data suggest greater muscle demands in laparoscopic surgery, but greater cognitive demands in robotic surgery.
M3 - Journal article
JO - Annals of Surgery - Open
JF - Annals of Surgery - Open
SN - 2691-3593
ER -