Rights statement: Accepted for publication in Journal of Geophysical Research:Space Physics. Copyright 2020 American Geophysical Union. Further reproduction or electronic distribution is not permitted.
Accepted author manuscript, 411 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - The effect of field-aligned currents and centrifugal forces on ionospheric outflow at Saturn
AU - Martin, Carley
AU - Ray, Licia C
AU - Felici, M.
AU - Constable, DA
AU - Lorch, Chris
AU - Kinrade, Joe
AU - Gray, Rebecca
N1 - Accepted for publication in Journal of Geophysical Research:Space Physics. Copyright 2020 American Geophysical Union. Further reproduction or electronic distribution is not permitted.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - Ionospheric outflow is driven by an ambipolar electric field induced due to the separation of electrons and ions in a gravitational field when equilibrium along a magnetic field line is lost. A model of ionospheric outflow at Saturn was developed using transport equations to estimate the number of charged particles that flow from the auroral regions into the magnetosphere. The model evaluates the outflow from 1,400 km in altitude above the 1 bar level, to 3 RS along the field line. The main ion constituents evaluated are R+ and R+3. We consider the centrifugal force exerted on the particles due to a fast rotation rate, along with the effects of field‐aligned currents present in the auroral regions. The total number flux from both auroral regions is found to be 5.5–13.0×1027 s−1, which relates to a total mass source of 5.5–17.7 kg s−1. These values are on average an order of magnitude higher than expected without the additional effects of centrifugal force and field‐aligned currents. We find the ionospheric outflow rate to be comparable to the lower estimates of the mass loading rate from Enceladus and are in agreement with recent Cassini observations. This additional mass flux into the magnetosphere can substantially affect the dynamics and composition of the inner and middle magnetosphere of Saturn.
AB - Ionospheric outflow is driven by an ambipolar electric field induced due to the separation of electrons and ions in a gravitational field when equilibrium along a magnetic field line is lost. A model of ionospheric outflow at Saturn was developed using transport equations to estimate the number of charged particles that flow from the auroral regions into the magnetosphere. The model evaluates the outflow from 1,400 km in altitude above the 1 bar level, to 3 RS along the field line. The main ion constituents evaluated are R+ and R+3. We consider the centrifugal force exerted on the particles due to a fast rotation rate, along with the effects of field‐aligned currents present in the auroral regions. The total number flux from both auroral regions is found to be 5.5–13.0×1027 s−1, which relates to a total mass source of 5.5–17.7 kg s−1. These values are on average an order of magnitude higher than expected without the additional effects of centrifugal force and field‐aligned currents. We find the ionospheric outflow rate to be comparable to the lower estimates of the mass loading rate from Enceladus and are in agreement with recent Cassini observations. This additional mass flux into the magnetosphere can substantially affect the dynamics and composition of the inner and middle magnetosphere of Saturn.
U2 - 10.1029/2019JA027728
DO - 10.1029/2019JA027728
M3 - Journal article
VL - 125
JO - Journal of Geophysical Research: Space Physics
JF - Journal of Geophysical Research: Space Physics
SN - 2169-9402
IS - 7
M1 - e2019JA027728
ER -