Rights statement: Copyright 2015 American Institute of Physics. The following article appeared in Applied Physics Letters, 106 (18), 2015 and may be found at http://dx.doi.org/10.1063/1.4919899 This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Final published version, 0.99 MB, PDF document
Available under license: None
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe
AU - Walsh, D.A.
AU - Snedden, E.W.
AU - Jamison, S.P.
N1 - Copyright 2015 American Institute of Physics. The following article appeared in Applied Physics Letters, 106 (18), 2015 and may be found at http://dx.doi.org/10.1063/1.4919899 This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
PY - 2015/5
Y1 - 2015/5
N2 - The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles withoutan ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.
AB - The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles withoutan ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.
U2 - 10.1063/1.4919899
DO - 10.1063/1.4919899
M3 - Journal article
VL - 106
JO - Applied Physics Letters
JF - Applied Physics Letters
SN - 0003-6951
IS - 18
M1 - 181109
ER -