Home > Research > Publications & Outputs > Immunogenicity and Protective Efficacy of an In...

Links

Text available via DOI:

View graph of relations

Immunogenicity and Protective Efficacy of an Intranasal Live-attenuated Vaccine Against SARS-CoV-2

Research output: Contribution to journalJournal articlepeer-review

E-pub ahead of print
Close
<mark>Journal publication date</mark>4/08/2021
<mark>Journal</mark>iScience
Publication StatusE-pub ahead of print
Early online date4/08/21
<mark>Original language</mark>English

Abstract

SUMMARY Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T cell-mediated immunity. Hamsters immunised with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic.