Rights statement: This is the author’s version of a work that was accepted for publication in Spatial Statistics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Spatial Statistics, 53, 2023 DOI: 10.1016/j.spasta.2022.100725
Accepted author manuscript, 7.05 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Joint Estimation of Extreme Spatially Aggregated Precipitation at Different Scales through Mixture Modelling
AU - Richards, Jordan
AU - Tawn, Jonathan
AU - Brown, Simon
N1 - This is the author’s version of a work that was accepted for publication in Spatial Statistics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Spatial Statistics, 53, 2023 DOI: 10.1016/j.spasta.2022.100725
PY - 2023/3/31
Y1 - 2023/3/31
N2 - Although most models for rainfall extremes focus on pointwise values, it is aggregated precipitation over areas up to river catchment scale that is of the most interest. To capture the joint behaviour of precipitation aggregates evaluated at different spatial scales, parsimonious and effective models must be built with knowledge of the underlying spatial process. Precipitation is driven by a mixture of processes acting at different scales and intensities, e.g., convective and frontal, with extremes of aggregates for typical catchment sizes arising from extremes of only one of these processes, rather than a combination of them. High-intensity convective events cause extreme spatial aggregates at small scales but the contribution of lower-intensity large-scale fronts is likely to increase as the area aggregated increases. Thus, to capture small to large scale spatial aggregates within a single approach requires a model that can accurately capture the extremal properties of both convective and frontal events. Previous extreme value methods have ignored this mixture structure; we propose a spatial extreme value model which is a mixture of two components with different marginal and dependence models that are able to capture the extremal behaviour of convective and frontal rainfall and more faithfully reproduces spatial aggregates for a wide range of scales. Modelling extremes of the frontal component raises new challenges due to it exhibiting strong long-range extremal spatial dependence. Our modelling approach is applied to fine-scale, high-dimensional, gridded precipitation data. We show that accounting for the mixture structure improves the joint inference on extremes of spatial aggregates over regions of different sizes.
AB - Although most models for rainfall extremes focus on pointwise values, it is aggregated precipitation over areas up to river catchment scale that is of the most interest. To capture the joint behaviour of precipitation aggregates evaluated at different spatial scales, parsimonious and effective models must be built with knowledge of the underlying spatial process. Precipitation is driven by a mixture of processes acting at different scales and intensities, e.g., convective and frontal, with extremes of aggregates for typical catchment sizes arising from extremes of only one of these processes, rather than a combination of them. High-intensity convective events cause extreme spatial aggregates at small scales but the contribution of lower-intensity large-scale fronts is likely to increase as the area aggregated increases. Thus, to capture small to large scale spatial aggregates within a single approach requires a model that can accurately capture the extremal properties of both convective and frontal events. Previous extreme value methods have ignored this mixture structure; we propose a spatial extreme value model which is a mixture of two components with different marginal and dependence models that are able to capture the extremal behaviour of convective and frontal rainfall and more faithfully reproduces spatial aggregates for a wide range of scales. Modelling extremes of the frontal component raises new challenges due to it exhibiting strong long-range extremal spatial dependence. Our modelling approach is applied to fine-scale, high-dimensional, gridded precipitation data. We show that accounting for the mixture structure improves the joint inference on extremes of spatial aggregates over regions of different sizes.
KW - Extreme precipitation
KW - Mixture modelling
KW - Spatial aggregates
KW - Spatial conditional extremes
U2 - 10.1016/j.spasta.2022.100725
DO - 10.1016/j.spasta.2022.100725
M3 - Journal article
VL - 53
JO - Spatial Statistics
JF - Spatial Statistics
SN - 2211-6753
M1 - 100725
ER -