Home > Research > Publications & Outputs > Origin and control of ionic hydration patterns ...

Electronic data


Text available via DOI:

View graph of relations

Origin and control of ionic hydration patterns in nanopores

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Article number65
<mark>Journal publication date</mark>18/06/2021
<mark>Journal</mark>Communications Materials
Publication StatusPublished
<mark>Original language</mark>English


In order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.