Home > Research > Publications & Outputs > Terahertz aperture SNOM mapping of metamaterial...

Text available via DOI:

View graph of relations

Terahertz aperture SNOM mapping of metamaterial coupled resonators

Research output: Contribution to conference - Without ISBN/ISSN Conference paperpeer-review

Published

Standard

Terahertz aperture SNOM mapping of metamaterial coupled resonators. / Almond, N.W.; Hermans, R.; Hale, L.L. et al.
2020. Paper presented at Metamaterials, Metadevices, and Metasystems 2020, California, United States.

Research output: Contribution to conference - Without ISBN/ISSN Conference paperpeer-review

Harvard

Almond, NW, Hermans, R, Hale, LL, Kindness, SJ, Michailow, W, Wei, B, Romain, X, Ye, S, Young, R, Degl'Innocenti, R, Beere, HE, Ritchie, DA, Mitrofanov, O, N., E, M.A., N (ed.), N.I., Z (ed.) & (SPIE), TSOP-OIE 2020, 'Terahertz aperture SNOM mapping of metamaterial coupled resonators', Paper presented at Metamaterials, Metadevices, and Metasystems 2020, California, United States, 20/08/20 - 20/08/20. https://doi.org/10.1117/12.2568045

APA

Almond, N. W., Hermans, R., Hale, L. L., Kindness, S. J., Michailow, W., Wei, B., Romain, X., Ye, S., Young, R., Degl'Innocenti, R., Beere, H. E., Ritchie, D. A., Mitrofanov, O., N., E., M.A., N. (Ed.), N.I., Z. (Ed.), & (SPIE), T. S. O. P.-O. I. E. (2020). Terahertz aperture SNOM mapping of metamaterial coupled resonators. Paper presented at Metamaterials, Metadevices, and Metasystems 2020, California, United States. https://doi.org/10.1117/12.2568045

Vancouver

Almond NW, Hermans R, Hale LL, Kindness SJ, Michailow W, Wei B et al.. Terahertz aperture SNOM mapping of metamaterial coupled resonators. 2020. Paper presented at Metamaterials, Metadevices, and Metasystems 2020, California, United States. doi: 10.1117/12.2568045

Author

Almond, N.W. ; Hermans, R. ; Hale, L.L. et al. / Terahertz aperture SNOM mapping of metamaterial coupled resonators. Paper presented at Metamaterials, Metadevices, and Metasystems 2020, California, United States.

Bibtex

@conference{1852fdc91aab4a539f0aaa0b001c79e8,
title = "Terahertz aperture SNOM mapping of metamaterial coupled resonators",
abstract = "Metamaterials have emerged as the basis of a novel optoelectronic platform operating in the terahertz (THz) range, due to their versatility and strong light-matter interaction. The necessary design of efficient modulators and detectors requires a detailed investigation of metamaterial resonances and their interplay with an active medium, e.g. graphene. An aperture-SNOM (a-SNOM) system based on picosecond THz pulses was used to investigate the spectral characteristics of a set of lithographically tuned metamaterial coupled resonators. This approach allowed the mapping of the supported E-field of each resonator a few microns from the device plane, yielding bonding and antibonding modes reminiscent of electromagnetic induced transparency. {\textcopyright} COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.",
keywords = "A-SNOM, EIT, Metamaterial, Metasurface, Near-field, TDS, Terahertz, Crystal resonators, Mapping, Resonators, Active medium, Antibonding, Coupled resonator, Electromagnetic induced transparency, Light-matter interactions, Picosecond thz pulse, Spectral characteristics, Terahertz range, Metamaterials",
author = "N.W. Almond and R. Hermans and L.L. Hale and S.J. Kindness and W. Michailow and B. Wei and X. Romain and S. Ye and R. Young and R. Degl'Innocenti and H.E. Beere and D.A. Ritchie and O. Mitrofanov and Engheta N. and Noginov M.A. and Zheludev N.I. and (SPIE), {The Society of Photo-Optical Instrumentation Engineers}",
note = "Conference code: 162897 Export Date: 14 October 2020 CODEN: PSISD Correspondence Address: Almond, N.W.; Cavendish Laboratory,University of Cambridge, J J Thomson Avenue, United Kingdom; email: na470@cam.ac.uk Funding details: Engineering and Physical Sciences Research Council, EPSRC, EP/S019383/1, EP/P021859/1 Funding text 1: The authors acknowledge EPSRC funding within the Hyperterahertz grant, number EP/P021859/1, Jonathan P. Griffiths and Thomas A. Mitchell for help with electron beam lithography. R.D. acknowledges support from the EPSRC (Grant No EP/S019383/1). References: Li, Y., Tantiwanichapan, K., Swan, A.K., Paiella, R., Graphene plasmonic devices for terahertz optoelectronics (2020) Nanophotonics, 9 (7), pp. 1901-1920; Low, T., Avouris, P., Graphene plasmonics for terahertz to mid-infrared applications (2014) Acs Nano, 8 (2), pp. 1086-1101. , PMID: 24484181; Shi, J., Li, Z., Sang, D.K., Xiang, Y., Li, J., Zhang, S., Zhang, H., Thz photonics in two dimensional materials and metamaterials: Properties, devices and prospects (2018) J. Mater. Chem. C, 6, pp. 1291-1306; Dhillon, S.S., Vitiello, M.S., Linfield, E.H., Davies, A.G., Hoffmann, M.C., Booske, J., Paoloni, C., Johnston, M.B., The 2017 terahertz science and technology roadmap (2017) Journal of Physics D: Applied Physics, 50, p. 043001. , Jan; Degl'Innocenti, R., Wallis, R., Wei, B., Xiao, L., Kindness, S.J., Mitrofanov, O., Braeuninger-Weimer, P., Ritchie, D.A., Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser (2017) Acs Photonics, 4 (9), pp. 2150-2157; Mitrofanov, O., Lee, M., Hsu, J.W.P., Brener, I., Harel, R., Federici, J.F., Wynn, J.D., West, K.W., Collection-mode near-field imaging with 0.5-thz pulses (2001) Ieee Journal of Selected Topics in Quantum Electronics, 7 (4), pp. 600-607; Hale, L.L., Keller, J., Siday, T., Hermans, R.I., Haase, J., Reno, J.L., Brener, I., Mitrofanov, O., Noninvasive near-field spectroscopy of single subwavelength complementary resonators (2020) Laser & Photonics Reviews, 14 (4), p. 1900254; Chen, C.-Y., Un, I.-W., Tai, N.-H., Yen, T.-J., Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance Opt. Express, 17, pp. 15372-15380. , http://www.opticsexpress.org/abstract.cfm?URI=oe-17-17-15372; Kindness, S.J., Almond, N.W., Wei, B., Wallis, R., Michailow, W., Kamboj, V.S., Braeuninger-Weimer, P., Degl'Innocenti, R., Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning (2018) Advanced Optical Materials, 6 (21), p. 1800570; Metamaterials, Metadevices, and Metasystems 2020 ; Conference date: 20-08-2020 Through 20-08-2020",
year = "2020",
month = aug,
day = "20",
doi = "10.1117/12.2568045",
language = "English",

}

RIS

TY - CONF

T1 - Terahertz aperture SNOM mapping of metamaterial coupled resonators

AU - Almond, N.W.

AU - Hermans, R.

AU - Hale, L.L.

AU - Kindness, S.J.

AU - Michailow, W.

AU - Wei, B.

AU - Romain, X.

AU - Ye, S.

AU - Young, R.

AU - Degl'Innocenti, R.

AU - Beere, H.E.

AU - Ritchie, D.A.

AU - Mitrofanov, O.

AU - N., Engheta

AU - (SPIE), The Society of Photo-Optical Instrumentation Engineers

A2 - M.A., Noginov

A2 - N.I., Zheludev

N1 - Conference code: 162897 Export Date: 14 October 2020 CODEN: PSISD Correspondence Address: Almond, N.W.; Cavendish Laboratory,University of Cambridge, J J Thomson Avenue, United Kingdom; email: na470@cam.ac.uk Funding details: Engineering and Physical Sciences Research Council, EPSRC, EP/S019383/1, EP/P021859/1 Funding text 1: The authors acknowledge EPSRC funding within the Hyperterahertz grant, number EP/P021859/1, Jonathan P. Griffiths and Thomas A. Mitchell for help with electron beam lithography. R.D. acknowledges support from the EPSRC (Grant No EP/S019383/1). References: Li, Y., Tantiwanichapan, K., Swan, A.K., Paiella, R., Graphene plasmonic devices for terahertz optoelectronics (2020) Nanophotonics, 9 (7), pp. 1901-1920; Low, T., Avouris, P., Graphene plasmonics for terahertz to mid-infrared applications (2014) Acs Nano, 8 (2), pp. 1086-1101. , PMID: 24484181; Shi, J., Li, Z., Sang, D.K., Xiang, Y., Li, J., Zhang, S., Zhang, H., Thz photonics in two dimensional materials and metamaterials: Properties, devices and prospects (2018) J. Mater. Chem. C, 6, pp. 1291-1306; Dhillon, S.S., Vitiello, M.S., Linfield, E.H., Davies, A.G., Hoffmann, M.C., Booske, J., Paoloni, C., Johnston, M.B., The 2017 terahertz science and technology roadmap (2017) Journal of Physics D: Applied Physics, 50, p. 043001. , Jan; Degl'Innocenti, R., Wallis, R., Wei, B., Xiao, L., Kindness, S.J., Mitrofanov, O., Braeuninger-Weimer, P., Ritchie, D.A., Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser (2017) Acs Photonics, 4 (9), pp. 2150-2157; Mitrofanov, O., Lee, M., Hsu, J.W.P., Brener, I., Harel, R., Federici, J.F., Wynn, J.D., West, K.W., Collection-mode near-field imaging with 0.5-thz pulses (2001) Ieee Journal of Selected Topics in Quantum Electronics, 7 (4), pp. 600-607; Hale, L.L., Keller, J., Siday, T., Hermans, R.I., Haase, J., Reno, J.L., Brener, I., Mitrofanov, O., Noninvasive near-field spectroscopy of single subwavelength complementary resonators (2020) Laser & Photonics Reviews, 14 (4), p. 1900254; Chen, C.-Y., Un, I.-W., Tai, N.-H., Yen, T.-J., Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance Opt. Express, 17, pp. 15372-15380. , http://www.opticsexpress.org/abstract.cfm?URI=oe-17-17-15372; Kindness, S.J., Almond, N.W., Wei, B., Wallis, R., Michailow, W., Kamboj, V.S., Braeuninger-Weimer, P., Degl'Innocenti, R., Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning (2018) Advanced Optical Materials, 6 (21), p. 1800570

PY - 2020/8/20

Y1 - 2020/8/20

N2 - Metamaterials have emerged as the basis of a novel optoelectronic platform operating in the terahertz (THz) range, due to their versatility and strong light-matter interaction. The necessary design of efficient modulators and detectors requires a detailed investigation of metamaterial resonances and their interplay with an active medium, e.g. graphene. An aperture-SNOM (a-SNOM) system based on picosecond THz pulses was used to investigate the spectral characteristics of a set of lithographically tuned metamaterial coupled resonators. This approach allowed the mapping of the supported E-field of each resonator a few microns from the device plane, yielding bonding and antibonding modes reminiscent of electromagnetic induced transparency. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

AB - Metamaterials have emerged as the basis of a novel optoelectronic platform operating in the terahertz (THz) range, due to their versatility and strong light-matter interaction. The necessary design of efficient modulators and detectors requires a detailed investigation of metamaterial resonances and their interplay with an active medium, e.g. graphene. An aperture-SNOM (a-SNOM) system based on picosecond THz pulses was used to investigate the spectral characteristics of a set of lithographically tuned metamaterial coupled resonators. This approach allowed the mapping of the supported E-field of each resonator a few microns from the device plane, yielding bonding and antibonding modes reminiscent of electromagnetic induced transparency. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

KW - A-SNOM

KW - EIT

KW - Metamaterial

KW - Metasurface

KW - Near-field

KW - TDS

KW - Terahertz

KW - Crystal resonators

KW - Mapping

KW - Resonators

KW - Active medium

KW - Antibonding

KW - Coupled resonator

KW - Electromagnetic induced transparency

KW - Light-matter interactions

KW - Picosecond thz pulse

KW - Spectral characteristics

KW - Terahertz range

KW - Metamaterials

U2 - 10.1117/12.2568045

DO - 10.1117/12.2568045

M3 - Conference paper

T2 - Metamaterials, Metadevices, and Metasystems 2020

Y2 - 20 August 2020 through 20 August 2020

ER -